# glRotate

## Name

glRotate — multiply the current matrix by a rotation matrix

## C Specification

 void glRotated( GLdouble angle, GLdouble x, GLdouble y, GLdouble z);
 void glRotatef( GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

## Parameters

angle

Specifies the angle of rotation, in degrees.

x, y, z

Specify the x, y, and z coordinates of a vector, respectively.

## Description

glRotate produces a rotation of angle degrees around the vector $x y z$. The current matrix (see glMatrixMode) is multiplied by a rotation matrix with the product replacing the current matrix, as if glMultMatrix were called with the following matrix as its argument:

$x 2 ⁡ 1 - c + c x ⁢ y ⁡ 1 - c - z ⁢ s x ⁢ z ⁡ 1 - c + y ⁢ s 0 y ⁢ x ⁡ 1 - c + z ⁢ s y 2 ⁡ 1 - c + c y ⁢ z ⁡ 1 - c - x ⁢ s 0 x ⁢ z ⁡ 1 - c - y ⁢ s y ⁢ z ⁡ 1 - c + x ⁢ s z 2 ⁡ 1 - c + c 0 0 0 0 1$

Where $c = cos ⁡ angle$, $s = sin ⁡ angle$, and $x y z = 1$ (if not, the GL will normalize this vector).

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glRotate is called are rotated. Use glPushMatrix and glPopMatrix to save and restore the unrotated coordinate system.

## Notes

This rotation follows the right-hand rule, so if the vector $x y z$ points toward the user, the rotation will be counterclockwise.